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Abstract 
 

An ANSYS finite element model is used to study the effects of shear strengthening by 
comparing the behaviors of two full-scale reinforced concrete beams (a reinforced concrete beam with 
no shear stirrups; and a reinforced concrete beam externally reinforced with Glass Fiber Reinforced 
Polymer (GFRP) on both sides of the beam).  Experimental beams replicated the transverse members 
from the Horsetail Creek Bridge, which are deficient in shear reinforcement.  Three-dimensional finite 
element models are developed using a smeared cracking approach for the concrete and three-
dimensional layered elements for the FRP composites.   
 It was found that the general behaviors through the linear and nonlinear ranges up to failure 
of the finite element models show good agreement with observations and data from the experimental 
full-scale beam tests.  The addition of GFRP reinforcement to the control beam shifts the behavior of the 
actual beam and model from a sudden shear failure near the ends of the beam to flexure failure by steel 
yielding at the midspan.  The shear reinforcement increases the load carrying capacity by 45% for the 
experimental beam and by 15% for the finite element model.  This finite element model can be used in 
additional studies to develop design rules for strengthening reinforced concrete bridge members using 
FRP.  
 
KEY WORDS: Finite Element Analysis; Reinforced Concrete Beams; Fiber-Reinforced Polymers  
 
 

 
Introduction 

 
In the last decade, fiber reinforced polymer (FRP) composites have been used for strengthening 

structural members of reinforced concrete bridges, which are deficient or obsolete due to changes in 
their use or consideration of increased loadings.  Many researchers have found that FRP composites 
applied to those members provide efficiency, reliability and cost effectiveness in rehabilitation ([10], 
[13], [18], [21]).  Currently in the U.S., ACI Committee 440 is working to establish design 
recommendations for FRP application to reinforced concrete [2]. 

The Horsetail Creek Bridge was constructed in 1913.  The bridge is in current use, located east 
of Portland, Oregon along the Historic Columbia River Highway, and is a historic structure.  The 
transverse bridge beams were constructed without the presence of shear reinforcement [11].  External 
reinforcement with FRP composites was used to increase the strength of the beams due to the historic 
nature of the bridge, limited funding and time restrictions.  

In this paper, the ANSYS finite element program [3] is used to simulate the behavior of two full-
scale reinforced concrete beams, which replicated the transverse members from the Horsetail Creek 
Bridge [11].  The finite element model uses a smeared cracking approach and three-dimensional layered 
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elements to model FRP composites.  This model can help to confirm the theoretical calculations as well 
as to provide a valuable supplement to the laboratory investigations of behavior.   

 
 

Experimental Beams 
 

Four full-scale reinforced concrete beams (similar to the transverse beams of the Horsetail Creek 
Bridge) were fabricated and tested at Oregon State University (a control beam, a shear-strengthened 
beam, a flexural-strengthened beam, and a beam with both shear and flexural strengthening) in order to 
compare their behaviors in the laboratory.  Glass Fiber Reinforced Polymer (GFRP) was applied on the 
sides of the actual Horsetail Creek Bridge beams to provide increased shear strength, and Carbon Fiber 
Reinforced Polymer (CFRP) to the bottom of the beams to increase the flexural strength. 

This paper focuses on the performance of the shear-strengthened beam; therefore the behaviors 
of the control reinforced concrete beam (no shear stirrups and no FRP reinforcement) and the shear-
strengthened beam (added GFRP reinforcing on the sides) are compared.  The experimental beams were 
tested in third point bending.  Figure 2.1 illustrates these two experimental beams.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.1:  Experimental beams (dimensions shown in mm):  (a) Control Beam;  
(b) Shear-Strengthened Beam [14] 
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Finite Element Models 

 
Element Types 
  A solid element, SOLID65, is used to model the concrete in ANSYS.  The solid element has 
eight nodes with three degrees of freedom at each node, translations in the nodal x, y, and z directions.  
The element is capable of plastic deformation, and cracking in three orthogonal directions.  A LINK8 
element is used to model the steel reinforcement.  Two nodes are required for this element.  At each 
node, degrees of freedom are identical to those for the SOLID65.  The element is also capable of plastic 
deformation.  A layered solid element, SOLID46, is used to model the GFRP composite.  The element 
allows for up to 100 different material layers with different orientations, and orthotropic material 
properties in each layer.  The element has three degrees of freedom at each node, translations in the 
nodal x, y, and z directions.   
 
Material Properties 
 Concrete: SOLID65 elements are capable of predicting the nonlinear behavior of concrete 
materials using a smeared crack approach [22].  The smeared crack approach has been adopted widely in 
the recent decades ([16], [19], [4], [20]).  Concrete is a quasi-brittle material and has very different 
behaviors in compression and tension.  The tensile strength of concrete is typically 8-15% of the 
compressive strength.  For the full-scale beam models, the elastic modulus for each beam was estimated 
using a pulse velocity method.  The ultimate concrete compressive and tensile strengths for each beam 
model were calculated by Equations 1, and 2, respectively [1].                              
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 where: 
  cE   = elastic modulus of concrete, MPa  
  'cf  = ultimate compressive strength, MPa 
  rf   = ultimate tensile strength (modulus of rupture), MPa 

   
Next, equations 3 and 4 [7] are used along with Equation 5 to construct the uniaxial compressive 

stress-strain curve for concrete in this study.   
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where: 
  f   = stress at any strainε , MPa 
  ε    = strain at stress f  
  cE  = concrete elastic modulus, MPa 

  0ε   = strain at the ultimate compressive strength 'cf   
 
In tension, the stress-strain curve for concrete is assumed to be linearly elastic up to the ultimate 

tensile strength.  After this point, the concrete cracks and the strength decreases to zero.  Figure 3.1 
shows the simplified uniaxial stress-strain relationship that is used in this study.   
 

 

 

 

 

 

 

 
 

 

 

 
 

Poisson’s ratio for concrete is assumed to be 0.2 and is used for all beams.  The value of a shear 
transfer coefficient, representing conditions of the crack face, used in many studies of reinforced 
concrete structures varied between 0.05 and 0.25 ([5], [8], [9]).  The shear transfer coefficient used in 
this study is equal to 0.2.   
 Steel Reinforcement and Steel Plates: Steel reinforcement in the experimental beams was 
constructed with typical steel reinforcing bars (fy = 415 Mpa).  Elastic modulus and yield stress for the 
steel reinforcement used in this FEM study follow the design material properties used for the 
experimental investigation.  The steel for the finite element models is assumed to be an elastic-perfectly 
plastic material and identical in tension and compression.  A Poisson’s ratio of 0.3 is used for the steel 
reinforcement.  Figure 3.2 shows the stress-strain relationship used in this study.   Material properties for 
the concrete and steel reinforcement are summarized in Table 3.1. 

For the finite element models, each load is distributed over a small area as for the experimental 
beams.  A 25 mm thick steel plate, modeled using SOLID45 elements, is added at the support location in 
order to avoid stress concentration problems.  This provides a more even stress distribution over the 
support area.  An elastic modulus equal to 200 GPa and Poisson’s ratio of 0.3 are used for the plates.  
The steel plates are assumed to be linear elastic materials. 

Figure 3.1:  Simplified Uniaxial Stress-Strain Curve for Concrete 
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Table 3.1:  Summary of Material Properties for Reinforced Concrete 

 
  
 
 
 
 
 

 
 FRP Composites: For this study, the GFRP is assumed to be a specially orthotropic and 
transversely isotropic material, where the properties of the FRP composites are the same in any direction 
perpendicular to the fibers.  GFRP is applied on the sides of the beams for increased shear strength, due 
to its superior strain at failure.  Linear elastic properties of FRP composites are assumed throughout this 
study.   
 
 
Table 3.2:  Summary of Material Properties for GFRP Composite [11] 
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Figure 3.2:  Stress-Strain Curve for Steel Reinforcement 
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Modeling Methodology  
 By taking advantage of the symmetry of the beams, a quarter of the full beam is used for 
modeling with proper boundary conditions.  This approach reduces computational time and computer 
disk space requirements significantly.  The steel reinforcement is simplified in the model by ignoring the 
inclined portions of the steel bars present in the test beams.  Ideally, the bond strength between the 
concrete and steel reinforcement should be considered.  However, in this study, perfect bond between 
materials is assumed.   

The various thickness of the FRP composites create discontinuities, which are not desirable for 
the finite element analysis.  These may develop high stress concentrations at local areas on the models, 
yielding difficulties in convergence of the solutions.  Therefore, a consistent thickness of FRP 
composites is used in the models to avoid discontinuities, by compensating with changes in the elastic 
and shear moduli in each layer.  For example, if the thickness of FRP laminates is doubled, the elastic 
and shear moduli are both reduced by 50%.  Note that the relationship between elastic and shear moduli 
is linear.  Perfect bond between concrete and FRP laminates is assumed.  A convergence study was 
carried out to determine an appropriate mesh density.  Minor modification of dimensions for the FRP 
reinforcing was made due to geometric constraints from the other elements in the models, i.e. meshing 
of concrete elements, steel rebar locations and required output locations.  Figure 3.3 shows the finite 
element models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3:  Finite Element Models (dimensions shown in mm):  (a) Control Beam;  
(b) Shear-Strengthened Beam 
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Comparison of Results 
 

Tensile Strain in Main Steel Reinforcing   
 Comparisons of the load-tensile strain plots from the finite element analyses and the 
experimental data for the main steel reinforcing at midspan are shown in Figure 4.1.  For both the 
control and shear-strengthened beams in the linear range (before concrete cracking) the strains from the 
finite element analysis correlate well with those from the experimental data.  In the nonlinear range, the 
trends of the finite element and the experimental results are generally similar.  The finite element 
analysis supports the experimental results that the main steel rebar at midspan for the control beam has 
not yielded at failure, while the steel rebar for the shear-strengthened beam yields but at a lower load.   
 
     

 

 

 

 

 

 

 

 
 
 
      
 
Compressive Strain in Concrete   
 The load-compressive strain (in concrete) plots collected at midspan at the center of the top face 
from the experiment are compared with results from the finite element analysis in Figure 4.2.  For the 
control beam, the load-compressive strain plots from the finite element analysis and the experimental 
data have excellent agreement.  For the shear-strengthened beam, the load-strain plots from the finite 
element and experimental results do not correlate well.  As shown in the figure, the experimental beam 
shows unexpected nonlinear behavior for applied loads from 0 to 470 kN.  Either erroneous test data or 
local material imperfections may be the cause.  Cracks occurring at the interfaces between the cement 
and aggregate due to their differences in elastic modulus, thermal coefficient, and response to change in 
moisture content when the concrete is hardened could be the source of the local material imperfections.  
At about 490 kN, large strains occur for the finite element model, whereas at a load of 535 kN similar 
behavior takes place for the experimental beam.  These loads are close to the yielding loads of the steel 
as shown in Figure 4.1.  The yielding of the steel explains the large concrete strains. 
 
 
 
 
 

 

Figure 4.1:  Load-Tensile Strain Plot for Main Steel Rebar: (a) Control Beam;  
(b) Shear-Strengthened Beam 

(a) 

0

100

200

300

400

500

600

700

0 1500 3000 4500 6000 7500 9000 10500 12000 13500

Microstrain

L
oa

d,
 P

  (
kN

)

               Experiment

               FEM

(b) 

0

100

200

300

400

500

600

700

0 1500 3000 4500 6000 7500 9000 10500 12000 13500

Microstrain

L
oa

d,
 P

  (
kN

)
               Experiment

               FEM 

Steel yielding



 

 
 

8

 
 

 

 

 

 
 
 
 
 
 
 
 

Load-Deflection Plots 
  Deflections are measured at midspan at the center of the bottom face of the beams.  Figure 4.3 
shows the load-deflection plots for the control and shear-strengthened beams.  In general, the load-
deflection plots for the beams from the finite element analyses agree quite well with the experimental 
data. The finite element load-deflection plots in the linear range are somewhat stiffer than the 
experimental plots.  After first cracking, the stiffness of the finite element models is again higher than 
that of the experimental beams.  There are several effects that may cause the higher stiffnesses in the 
finite element models.  First, microcracks are present in the concrete for the experimental beams, and 
could be produced by drying shrinkage in the concrete and/or handling of the beams.  On the other hand, 
the finite element models do not include the microcracks.  The microcracks reduce the stiffness of the 
experimental beams.  Next, perfect bond between the concrete and steel reinforcing is assumed in the 
finite element analyses, but the assumption would not be true for the experimental beams.  As bond slip 
occurs, the composite action between the concrete and steel reinforcing is lost.  Thus, the overall 
stiffness of the experimental beams is expected to be lower than for the finite element models (which 
also generally impose additional constraints on behavior).   
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2:  Load-Compressive Strain Plot for Concrete 
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Figure 4.3:  Load-Deflection Plot 
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Loads at Failure 
  Table 4.1 shows comparisons between the ultimate loads of the experimental beams and the 
final loads from the finite element models.  The final loads for the finite element models are the last 
applied load steps before the solution diverges due to numerous cracks and large deflections.  It is seen 
that the ANSYS models underestimate the strengths of the beams, as anticipated.   
 One explanation is that the inclined portions of the steel reinforcement are excluded from the 
finite element models.  Toughening mechanisms at the crack faces [17], i.e. the grain bridging process, 
interlocking between the cracked faces, crack tips blunted by voids, and the crack branching process, 
may also slightly extend the failures of the experimental beams before complete collapse.  The finite 
element models do not have these mechanisms.  Finally, the material properties assumed in this study 
may be imperfect.   

In the experiment, the failure modes for the beams were as predicted.  The control beam failed in 
shear.  The shear-strengthened beam failed in flexure at the midspan, with yielding of the steel 
reinforcing followed by a compression failure at the top of the beam.  Crack patterns obtained from the 
finite element analyses at the last converged load steps and the failure modes of the experimental beams 
agree very well.  For the finite element model of the control beam, smeared cracks spread over the high 
shear stress region and occur mostly at the ends of the beam from the support toward the loading area.  
The finite element program accurately predicts that the control beam fails in shear.  For the shear-
strengthened beam, numerous cracks occur at midspan rather than underneath the loading location.  The 
crack patterns and steel yielding at the midspan for the finite element shear strengthened beam support 
the experimental results that the beam fails in flexure.  
 
 
Table 4.1:  Comparisons Between Experimental Ultimate Loads and Finite Element Final Loads 

Beam 
Ultimate load (kN) 
from Experiment, 

Failure Mode* 

Final load 
(kN) from 

FEA 
%Difference 

Control beam 475, Shear 455 -5 
Shear beam 690, Flexure 525 -24 

Percent Gain over Control Beam 45% 15%  
*[14] 
 
 
Evolutions of Crack Patterns for Concrete 
 The ANSYS program records a crack pattern at each applied load step.  Figure 4.4 shows 
evolutions of crack patterns developing for each beam.  The cracks appear underneath the loading 
location on the control beam model.  For the shear strengthened beam model, there are no compressive 
cracks underneath the loading location.  The appearance of the cracks reflects the failure modes for the 
beams. 
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Conclusions 

 
 The general behaviors of the finite element models show good agreement with observations and 
data from the experimental full-scale beam tests.  The addition of GFRP reinforcement to the control 
beam shifts the behavior of the actual beam and model from a sudden shear failure near the ends of the 
beam to flexure failure by steel yielding at the midspan.  The shear reinforcement increases the load 
carrying capacity by 45% for the experimental beam and by 15% for the finite element model.  This 
finite element model can be used in additional studies to develop design rules for strengthening 
reinforced concrete bridge members using FRP.  
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